Pontos De Término Médios Móveis


Médias móveis ou Médias móveis em SSAS As médias móveis suavizam os dados do preço para formar um indicador de tendência seguinte. Eles não prevêem a direção do preço, mas sim definem a direção atual com um atraso. As médias móveis são desactualizadas porque se baseiam em preços passados. Apesar deste atraso, as médias móveis ajudam a melhorar a ação do preço e a eliminar o ruído. Eles também formam os blocos de construção para muitos outros indicadores técnicos e sobreposições, como Bollinger Bands. MACD e o McClellan Oscillator. Os três tipos mais populares de médias móveis são a média móvel simples (SMA) e a média móvel ponderada (WMA) a média móvel exponencial (EMA). Essas médias móveis podem ser usadas para identificar a direção da tendência ou definir níveis potenciais de suporte e resistência. Média móvel simples (SMA) Uma média móvel simples é formada calculando o preço médio de uma garantia em um período específico de períodos. A maioria das médias móveis baseia-se nos preços de fechamento. Uma média móvel simples de 5 dias é a soma de cinco dias de preços de fechamento dividida por cinco. Como o próprio nome indica, uma média móvel é uma média que se move. Os dados antigos são descartados à medida que novos dados estão disponíveis. Isso faz com que a média se mova ao longo da escala de tempo. Abaixo está um exemplo de uma média móvel de 5 dias que evolui ao longo de três dias. Preços diários de fechamento: 11,12,13,14,15,16,17 Primeiro dia de SMA de 5 dias: (11 12 13 14 15) 5 13 Segundo dia de SMA de 5 dias: (12 13 14 15 16) 5 14 Terceiro dia de SMA de 5 dias: (13 14 15 16 17) 5 15 O primeiro dia da média móvel cobre apenas os últimos cinco dias. O segundo dia da média móvel baixa o primeiro ponto de dados (11) e adiciona o novo ponto de dados (16). O terceiro dia da média móvel continua diminuindo o primeiro ponto de dados (12) e adicionando o novo ponto de dados (17). No exemplo acima, os preços aumentam gradualmente de 11 para 17 durante um total de sete dias. Observe que a média móvel também aumenta de 13 para 15 durante um período de cálculo de três dias. Observe também que cada valor médio móvel está logo abaixo do último preço. Por exemplo, a média móvel para o primeiro dia é igual a 13 e o último preço é 15. Os preços nos quatro dias anteriores foram menores e isso faz com que a média móvel atinja. Em uma agregação móvel. A técnica importante é construir um intervalo com o nível usando os pontos finais que são relativos ao membro atual, podemos criar esse intervalo usando muitas funções no MDX, dependendo do intervalo médias para o intervalo de 6 meses médias para intervalo de 6 meses Média do período atual e Período anterior Usando períodos paralelos com o membro Measures. avg12ms como avg (Date. Month of Year. lag (11): Date. Month of Year, Measures. Internet Sales Value) member Measures. avg6ms as avg (Date. Month of Year. lag) (5): Data. Mês do Ano, Medidas. Valor de Vendas Internas) membro Measures. avg3ms como avg (Data. Marth of Year. lag (2): Date. Month of Year, Measures. Internet Sales Amount) selecione em colunas de Adventure Works Post navigation6.2 Médias móveis ma 40 elecsales, ordem 5 41 Na segunda coluna desta tabela, uma média móvel da ordem 5 é mostrada, fornecendo uma estimativa do ciclo da tendência. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993), o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores nos dois primeiros anos ou nos últimos dois anos porque não temos duas observações em ambos os lados. Na fórmula acima, a coluna 5-MA contém os valores de chapéu com k2. Para ver o que a estimativa do ciclo de tendência se parece, traçamo-lo juntamente com os dados originais na Figura 6.7. Planilha 40 elesales, quot principal de vendas de eletricidade residencial, ylab quotGWhot. Xlab quotYearquot 41 linhas 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal das séries temporais sem todas as pequenas flutuações. O método de média móvel não permite estimativas de T onde t é próximo das extremidades da série, portanto, a linha vermelha não se estende para as bordas do gráfico de cada lado. Mais tarde, usaremos métodos mais sofisticados de estimativa do ciclo de tendência que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa do ciclo de tendência. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito de alterar a ordem da média móvel para os dados residenciais de vendas de eletricidade. As médias móveis simples, como estas, geralmente são de ordem ímpar (por exemplo, 3, 5, 7, etc.). É assim que são simétricas: em uma média móvel da ordem m2k1, há k observações anteriores, k observações posteriores e a observação do meio Que estão em média. Mas se eu estivesse em ponto, não seria mais simétrico. Médias móveis das médias móveis É possível aplicar uma média móvel a uma média móvel. Um dos motivos para isso é fazer uma média móvel de ordem par simétrica. Por exemplo, podemos levar uma média móvel da ordem 4 e, em seguida, aplicar outra média móvel da ordem 2 aos resultados. Na Tabela 6.2, isso foi feito para os primeiros anos dos dados de produção australiana de cerveja trimestral. Beer2 lt - window 40 ausbeer, começar 1992 41 ma4 lt-ma 40 beer2, order 4. center FALSE 41 ma2x4 lt-ma 40 beer2, order 4. center TRUE 41 A notação 2times4-MA na última coluna significa 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel da ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451.2 (443410420532) 4 e 448.8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média desses dois: 450.0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), ela é chamada de média móvel centrada da ordem 4. Isso ocorre porque os resultados agora são simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: comece o amplificador de amplificação. Bigfrac (y y y y) frac (y y y y) Grande amplificação fractura fractura fratura e fractura fratura. Fim É agora uma média ponderada de observações, mas sim simétrico. Outras combinações de médias móveis também são possíveis. Por exemplo, um 3x3-MA é freqüentemente usado e consiste em uma média móvel da ordem 3 seguida de outra média móvel da ordem 3. Em geral, uma ordem final MA deve ser seguida por uma ordem final MA para torná-la simétrica. Da mesma forma, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimando o ciclo de tendência com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo de tendência a partir de dados sazonais. Considere o 2x4-MA: fractura de fractura fratura e fractura fratura. Quando aplicado a dados trimestrais, cada trimestre do ano recebe peso igual à medida que o primeiro e o último termos se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será promediada e os valores resultantes do chapéu t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido usando um 2x 8-MA ou um 2x 12-MA. Em geral, 2 vezes m-MA é equivalente a uma média móvel ponderada da ordem m1 com todas as observações tomando peso 1 m, exceto para os primeiros e últimos termos que tomam pesos 1 (2m). Então, se o período sazonal é igual e de ordem m, use um 2-m-MA para estimar o ciclo da tendência. Se o período sazonal for estranho e de ordem m, use um m-MA para estimar o ciclo de tendências. Em particular, um 2x 12-MA pode ser usado para estimar o ciclo de tendência dos dados mensais e um 7-MA pode ser usado para estimar o ciclo de tendência dos dados diários. Outras opções para a ordem do MA geralmente resultarão em estimativas do ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2x12-MA aplicado ao índice de pedidos de equipamentos elétricos. Observe que a linha suave mostra nenhuma sazonalidade é quase o mesmo que o ciclo de tendência mostrado na Figura 6.2, que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Lote 40 elecequip, ylab quotNúmero de índice de ordens. Quotgrayquot col, quot principal. Produção de equipamentos elétricos (área do euro) 41 linhas 40 ma 40 elecequip, ordem 12 41. col quotredquot 41 Médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, um m-MA ponderado pode ser escrito como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, pontos, ak. É importante que todos os pesos somem para um e que sejam simétricos para que aj a. O m-MA simples é um caso especial em que todos os pesos são iguais a 1 m. Uma grande vantagem das médias móveis ponderadas é que eles produzem uma estimativa mais suave do ciclo da tendência. Em vez das observações que entram e saem do cálculo em peso total, seus pesos aumentam lentamente e depois diminuem lentamente resultando em uma curva mais suave. Alguns conjuntos específicos de pesos são amplamente utilizados. Alguns destes são apresentados na Tabela 6.3.

Comments

Popular Posts